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Chapter 5  SPACE VECTOR PWM 

5.1

5.2

 Introduction 

The space vector PWM (SVPWM) [5.1] is an alternative method used to control 
three-phase inverters, where the PWM duty cycles are computed rather than derived 
through hardware comparison like sine-triangle PWM reviewed in detail in Chapter 4. 
In SVPWM, the three-phase stationary reference frame voltages for each inverter 
switching state are mapped to the complex two-phase orthogonal α-β plane. The 
reference voltage is represented as a vector in this plane and duty-cycles are computed 
for the selected switching state vectors in proximity to the reference. In multilevel 
inverters, the number of switching state vectors increases and this additional 
complexity has prompted many attempts at optimizing the performance of the 
SVPWM method for multilevel inverters. 

This chapter focuses specifically on one simple multilevel SVPWM scheme which is 
relatively easy to implement in hardware. The aim is do a direct comparison with the 
other forms of control when applied to the flying-capacitor inverter. 

 Space-Vector Representation 

Space vector modulation was developed from the concept that a set of three-phase 
waveforms can be represented by a single rotating vector. One of the earliest proposed 
modulation strategies to use this concept was by Murai et al. [5.2]. Space vector PWM 
developed fully in the late 1980s through the work of various researchers, notably Van 
der Broeck [5.3]. It was also applied to three-level inverters at that time through the 
work of Steinke [5.4] and Bauer and Heining [5.5]. 

The application of SVPWM to multilevel inverters developed throughout the 1990s 
with various schemes proposed in the literature. The larger number of switching states 
in a multilevel inverter proved challenging in developing optimum algorithms for the 
computation of duty cycles and selection of switching states at the different voltage 
levels. Lee et al. from Hanyang University [5.6] proposed a method of duty cycle 
computation which was based on the individual triangular regions between the 
multilevel switching states. A similar approach is been adopted for a generalised 
SVPWM algorithm developed by Wei, et al. from Ryerson University [5.7] which is 
aimed at the control of cascaded-cell multilevel inverters. An alternative computation 
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algorithm for computing the duty cycles has been proposed by Peng et al. from 
Virginia Polytechnic and State University [5.8]. 

Zhang et al. from Oregon State University [5.9] investigated switching state selection 
in order to eliminate common-mode voltages. Li et al. from two New York State 
universities [5.10] developed a multilevel SVPWM scheme by creating two phase 
shifted vectors to represent the actual reference vector. They developed this algorithm 
specifically for the cascaded-cell multilevel inverter where the requirements for cell-
capacitor voltage balancing are not present. Also of interest is the work of Filho et al. 
[5.11], who have applied artificial neural networks (ANN) to the problem of sector 
identification and duty cycle computation. 

It has been appreciated since the beginning of SVPWM development that there is a 
correlation between the carrier-based PWM scheme and SVPWM [5.12]. Boys and 
Handley [5.13] analysed the equivalent SVPWM reference showing it has the form of 
a sinusoid injected with a triangular signal. Wu et al. [5.14] have investigated this 
relationship concerning a multilevel implementation. 

Meynard’s group at Toulouse [5.15] have used SVPWM in the control of a flying-
capacitor inverter used in an induction motor drive. Voltage balancing is achieved 
through voltage sensors which change the switching state depending on the voltage 
level demand from the SVPWM algorithm. Brazilian researchers Mendes et al. [5.16] 
have been investigating multilevel SVPWM and have demonstrated its application to 
a two-cell flying-capacitor inverter. The cell-capacitor voltage balancing is achieved 
by monitoring the cell-capacitor voltages and phase current, and then using a simple 
on/off controller. 

 

5.2.1 Three-Phase Clarke Transformation 

A three-phase system of stationary reference frame voltages can be mapped to a two-
phase orthogonal α-β plane. The relationship is shown in Figure 5.2.1. This is a 
convenient technique especially in rotating three-phase machines, since the rotating 
system vector in d-q axis plane is found by applying an angular phase shift. The 
mathematical transform for converting the stationary three-phase parameters to the 
orthogonal plane is known as the Clarke or Park transform. 
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Figure 5.2.1: Relationship between stationary reference frame and complex space 
vector frame 

 

The Clarke transform acts on an arbitrary set of balanced three-phase voltages to 
obtain the so called space vector representation in the complex α-β plane. The time-
dependent vector, V, is derived from the individual phase voltages according to  
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where van, vbn and vcn are the stationary node voltages with respect to the centre-point 
neutral of a balanced three-phase load, and 

 0  … (5.2.2) an bn cnv v v+ + =

The orthogonal reference frame components are found using 

 v jvα β= +V  … (5.2.3) 
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These simplify to 

 (2 1
3 3an bn cnv v v vα = − + )  … (5.2.6) 

 (1
3 bn cnv v vβ = − )  … (5.2.7) 

The space vector, V, is also normally represented in the complex plane using 

 jVe θ=V  … (5.2.8) 

where  
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 ( )2 2V v vα β= +  … (5.2.9) 

and  
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α

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟  … (5.2.10) 

 

5.2.2 Space Vector Duty Cycle Computation 

In the three-phase system, each phase voltage node can apply a voltage between 
+Vdc/2 and –Vdc/2. If the inverter limb circuit is a basic two-level topology, then only 
the minimum and maximum voltages are applied. In this case, the inverter has eight 
possible switching state vectors, and these form a hexagonal constellation pattern in 
the complex plane as shown in Figure 5.2.2. The vector identification uses a 0 to 
represent the negative phase voltage level and 1 to represent the positive phase voltage 
level. 

 

 

Figure 5.2.2: Inverter state space vector diagram 

 

The duty cycle computation is done for each triangular sector formed by two state 
vectors. Figure 5.2.3 illustrates the vector composition required for a reference in the 
sector bounded by the switching state vectors [100] and [110]. The magnitude of each 
switching state vector is 2Vdc/3. The magnitude of a vector to the mid-point of the line 
between each switching state vector vertex is Vdc/√3. The amplitude modulation index, 
ma, is defined as the ratio of the peak output voltage sinusoid to maximum positive 
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available voltage Vdc/2. Therefore, the maximum possible modulation depth for 
SVPWM is 1.155 and so SVPWM can operate with modulation depths above unity, in 
the same way as sine-triangle PWM with 3rd order harmonic injection. 

 

 

Figure 5.2.3: Sector 0 diagrammatic depiction of vector duty computation  

 

In terms of the modulation depth, the reference vector magnitude, VR, is given by 

 
2

a dc
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m VV =  … (5.2.11) 

Therefore, the equation for the space vector computation is given by 
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where 
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⎝ ⎠
⎞
⎟  … (5.2.14) 

and  

 D1 and D2 are the duty cycles in one PWM switching period 

So (5.2.13) can be re-written in terms of the duty cycles as 
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Therefore, the individual duty cycles for each sector boundary state vector and the 
zero state vector, [000] or [111], are given by  
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These give switching times T0, T1 and T2 for each inverter state for a total switching 
period of Ts. The timing diagram for SVPWM is shown in Figure 5.2.4 for the sector 
0. By convention in SVPWM, the switching times are arranged as shown in the figure, 
so that the switching pattern is symmetric around the centre of the switching period. 
To do this the zero vector [111] is placed at the centre of the switching period, and the 
zero vector [000] at the start and end, and total period for a zero vector is divided 
equally amongst the two zero-vectors. 

 

 
Figure 5.2.4: Space Vector Modulation Timing Diagram 
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In the other five sectors, the same computational process is applied. Equations (5.2.18 
- 5.2.20) still apply, but the reference angle θ is offset by –n3/π, where n is the sector 
number, in order to reference θ to the base V1 vector in each case. Another convention 
in SVPWM is to ensure there is only one switching transition within half a switching 
period, so the contributions of the switching state vectors are normally grouped to 
ensure this. 

5.3 Multilevel Space Vector PWM 

In multilevel inverters, the additional phase output voltage levels means that the 
number of state vectors is increased. In the 4-cell, 5-level inverter there are 61 distinct 
switching state vectors forming the constellation shown in Figure 5.3.1. The overall 
vector boundary still has a hexagonal form, with vertexes being the full voltage modes 
in each phase. 

 

 

Figure 5.3.1 Four-cell inverter normalised space vector constellation diagram 

 

The large number of possible space vectors which can be used to form a reference 
vector poses a computational problem. However, this complexity can be reduced to a 
form where the computational complexity is identical to the standard SVPWM 
method, and the multilevel issue of balancing can be addressed by the separate block 
implementation described in Chapter 4. 

Figure 5.3.2 shows a reference vector together with the switching state vector points 
for sector 0 in the case of the four-cell inverter which has five individual phase 
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voltage levels. The voltage level contribution from each phase is shown in the 
bracketed indicator for each state vector. The reference vector is positioned within a 
triangle formed by state vectors [310], [300] and [410]. State vectors within the 
bounds of the space vector constellation hexagon can be realised with more than one 
switching mode. For instance, vector [310] is equivalent to [421], and the number of 
permutations increases towards the centre where there are 5 zero space vectors. 

 

 

Figure 5.3.2 Voltage Reference Vector in Sector 0 

 

The reference vector can be realised using the combination of switching state vectors 
shown in Figure 5.3.3. The base vector [310] represents the state of the three phases 
throughout the duration of the switching period. The PWM duty cycles for the 
additional voltage contribution can then be calculated using the triangular geometry 
from two vectors –[010] and [100]. The negative sign indicates that the duty cycle 
pulse for phase B will be subtracted from the base rather than being added. 
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Figure 5.3.3 Vector Summation for Reference 

 

The vector computation making up the total duty cycles for all three phases can be 
expressed as 

  … (5.3.1) 
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The terms DA, DB, DC represent the ratio of average applied voltage to maximum 
possible voltage (4 levels) in each phase. It is clear that the example base vector [310] 
can be formed using two separate vectors along the edges of the sector 0 triangle as 
given by 

  … (5.3.2) 
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These vectors can be further expressed as duty cycle percentages of the main hexagon 
vertex vectors by 

  … (5.3.3) 
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Now, the relationship can be further re-arranged by introducing additional duty cycle 
terms for the two vertex vectors as given by 
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This means that, mathematically, the SVPWM computation problem in a multilevel 
inverter can be minimised to the following form 
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Figure 5.3.4 illustrates graphically the vector solutions required to obtain the reference 
vector in the five-level inverter. 

 

 

Figure 5.3.4 Space vector decomposition in sector 0 
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This means that the standard two-level duty cycle equations, (5.2.18 and 5.2.19) can 
be applied to multilevel inverters to obtain the timing information required to 
implement SVPWM. In the four-cell inverter, the phase duty cycle terms are first 
computed using the relevant sector equation, and these are listed in Table 5.3.1. 

 

Sector, n Phase Angle, θ Sector Duty Equation 
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Table 5.3.1: Sector duty equations 

 

Now, these can result in phase duty cycle values greater than 1, so the results are 
further processed by splitting the duty cycle terms into the fractional and integer parts, 
to obtain the timing parameters for multilevel SVPWM control. The integer part of 
each phase duty cycle is the applied base voltage level over the whole switching 
period. The fractional part is then the ratio of the applied time for the extra voltage 
level added on the output to the total PWM switching period. 

The base voltage level, m, for phase A in a switching cycle is the integer part of DA. 
Mathematically, it is found using the floor function and is expressed as 

 Am D= ⎢ ⎥⎣ ⎦  … (5.3.10) 
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The time when level m+1 is applied in the centre of the switching cycle can be found 
from the fractional part of DA, and is given by 

 ( )1m s A AT T D D+ = − ⎢ ⎥⎣ ⎦  … (5.3.11) 

This SVPWM can be implemented in hardware using a carrier-based approach to 
produce the gate firing signals. The modulation timing diagrams for one phase are 
shown in Figure 5.3.5. 

 

 

Figure 5.3.5 Space vector carrier-based implementation timing diagram 

 

In the case of the four-cell inverter where the per unit reference span is 2, the phase 
reference for the comparators can be computed using the duty cycle equations, 
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Table 5.3.2 lists the summations required for each sector. In this case, the reference is 
symmetric around zero and so there is no requirement to include zero voltage vector 
contributions. 
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Space Vector Phase Reference Voltages Sector 
n 

Phase Angle 
θ Va Vb Vc 

0 0 ≤ θ < π/3 D1+D2 -D1+D2 -D1-D2 
1 π/3 ≤ θ < 2π/3 D1-D2 D1+D2 -D1-D2 
2 2π/3 ≤ θ < π -D1-D2 D1+D2 -D1+D2 
3 π ≤ θ < 4π/3 -D1-D2 D1-D2 D1+D2 
4 4π/3 ≤ θ < 5π/3 -D1+D2 -D1-D2 D1+D2 
5 5π/3 ≤ θ < 2π D1+D2 -D1-D2 D1-D2 

Table 5.3.2: Phase reference equations 

 

The references are then applied to triangular carriers with minima at the centre of each 
switching period. This means that the reference must be computed and sampled at the 
maxima of each carrier. This is a form of symmetric regular sampling, but at the 
opposite points in the carrier cycle to standard carrier-based PWM schemes. The 
computation of the duty cycle assumes that at the minimum value all inverter cell 
upper switches are in the off state, so the phase disposition (PD) carrier scheme is 
used. 

When the computed SVPWM reference is analysed, it is clear that this control method 
is akin to a third harmonic injection scheme. Figure 5.3.6 shows the resultant 
reference waveform, and its decomposition into a fundamental sinusoid plus third 
order triangular-shaped injected signal. Boys and Handley [5.13] analysed this 
triangular third harmonic component in the frequency domain, but the time domain 
equation can also be found. 

The equivalent triangle injected waveform function, E(θ), can be found by first 
obtaining the peak of the decomposed pseudo-triangle injected signal at θ = π/3. The 
injected waveform function for the sector where n = 1, is given by, 

 ( ) ( ) ( )1 2 2 cosaE D D mθ θ= − −  … (5.3.14) 

Expanding with the duty cycle terms gives, 
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Now the value of E can be found for θ = π/3 as follows, 
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Therefore the waveform function, E(θ) can be approximated to, 

 ( ) ( )
3 26 33 2 2 1

2
amE

θ
π

θ θθ
π π

⎢ ⎥+⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞⎛ ⎞ ⎢ ⎥= + − + −⎜ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠

⎟  … (5.3.18) 

There is a slight error between this triangular approximation and the actual SVPWM 
equivalent injected signal. Figure 5.3.7 shows the variation in the error over a whole 
cycle. As can be seen, the maximum error is only 0.2% and so it is possible to 
implement a SVPWM control using carriers and a reference composed of the 
summation of a sine wave and a triangular signal. This simple approach lends itself 
well to a digital implementation. 
 

Figure 5.3.6: SVPWM equivalent reference, fundamental and injected 3rd order 
signal, ma = 0.9 

 

Figure 5.3.7: Error between equivalent SVPWM injected signal and 
approximated triangle 
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5.4 Ideal SVPWM Multilevel Firing Signals  

This section explains some of the subtle variations in performance due to slight 
changes in the carrier-based implementation of the multilevel SVPWM scheme. The 
duty cycles are computed at the peak in the carrier waveform, and then translated into 
a reference signal, and this has an impact on the symmetry over a cycle of the firing 
signals applied to the inverter. Figure 5.4.1 shows the modulation waveforms and 
resultant level firing signals (no balancing algorithm) with a low modulation 
frequency. As can be seen, the reference is not symmetric and there will be asymmetry 
in the output voltage which will result in the production of odd and even order 
harmonics within the spectrum. This is also the case in PD PWM with symmetric 
sampling. 

These even harmonics can be seen in the output voltage spectra shown in Figure 5.4.2. 
It can also be seen that the SVPWM implementation has a large harmonic at the 
switching frequency in the phase voltage which is cancelled in the line voltage. This 
spectral signature was also seen in the waveforms of sine-triangle PD PWM. The 
phase voltage spectrum also contains significant third and ninth harmonic components 
due to the injected triangular signal in the reference, which are cancelled in the three-
phase load. 

 

Figure 5.4.1: SVPWM waveforms, ma = 1.0, mf = 15 
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Figure 5.4.2: Voltage spectra of SVPWM, ma = 1.0, mf = 15 

 

If mf is an even number instead, then the reference will have symmetry, as shown in 
Figure 5.4.3. However, like the multilevel PD PWM scheme, the selection of an even 
mf results in asymmetry in the output voltage. The resultant spectra, Figure 5.4.4, 
again include even order harmonics of the fundamental, but  the overall result is very 
similar to the odd mf example above. 

 

Figure 5.4.3: SVPWM waveforms, ma = 1.0, mf = 12 
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Figure 5.4.4: Voltage spectra of SVPWM, ma = 1.0, mf = 12 

 

In the above example, the computation of the reference is done at each peak of the 
carrier, and results in a phase shift of 180/mf degrees. This can be compensated for in 
the reference computation by adding 180/mf degrees to the reference demand angle 
before computing the reference level. The resultant modulation waveforms are shown 
in Figure 5.4.5. There is still asymmetry in the output voltage as before and this leads 
to odd and even harmonics being present in the output voltage, as can be seen in 
Figure 5.4.6. Note that the THD is slightly higher than before, but this is due to the 
low mf value selected. 

 

Figure 5.4.5: Phase adjusted SVPWM waveforms, ma = 1.0, mf = 12 
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Figure 5.4.6: Voltage spectra of phase adjusted SVPWM, ma = 1.0, mf = 12 

 

For higher switching frequencies, the choice of odd or even values mf is not critical, as 
long as all three-phase carriers are synchronised in phase. This is because the 
harmonic component at the carrier frequency will only cancel in the line voltage when 
the carriers are in phase. This has already been shown in PD PWM. An example of the 
typical voltage spectra at a high mf is shown in Figure 5.4.7. The overall performance 
of this SVPWM implementation under the ideal conditions of no cell-capacitor 
voltage variation is very good as can be seen by the relatively low line voltage THD. 
The output quality performance is very similar to that seen for PD PWM. 

 

Figure 5.4.7: Voltage spectra of SVPWM with angle adjust, ma = 0.9, mf = 60 

 

The phase-shifting of the reference computation to take into account the sampling 
delay of the carriers is the preferred implementation of the SVPWM scheme which 
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will be used throughout the analysis of the flying-capacitor simulated inverter. Figure 
5.4.8 shows the variation in THD as a function of modulation depth for a perfectly 
balanced system with mf = 60. Figure 5.4.9 shows the variation in computed DF1 
under the same conditions. These curve show that low harmonic distortion achievable 
over a wide output voltage amplitude operating range, and are very similar to the ideal 
characteristics of the sine-triangle PD PWM scheme presented in the previous chapter. 

 

Figure 5.4.8: THD versus modulation index, ma for SVPWM with mf = 60 

 

Figure 5.4.9: DF1 versus modulation index, ma for SVPWM with mf = 60 
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5.5 Performance of Balanced Inverter 

The implementation of the SVPWM scheme is eminently suitable for applying the 
sub-carrier balancing scheme developed for sine-triangle PWM and presented in 
Chapter 4. For a direct comparison between the two types of PWM generation, the 
flying-capacitor inverter simulation uses the same modulation settings and load model 
used in Chapter 4. The inverter operates from a 400 V dc link and the unit cell-
capacitance is 1 mF. The three-phase generic load model parameters are RG = 0.5 Ω, 
LG = 4 mH, P = 3.75 kW with DPF = 0.8. The control settings are 3 kHz switching 
frequency (mf = 60), unity modulation depth (ma = 1) and 3 μs dead-time. 

Figure 5.5.1 shows the operating waveforms for the inverter controlled using the 
SVPWM scheme. The capacitor voltages are well balanced with only a small voltage 
ripple, and the phase currents exhibit low harmonic distortion. The load star point 
voltage waveform contains a dominant triangular shaped ripple component which is 
due to the effective injected signal in the equivalent reference of the SVPWM scheme.  

Figure 5.5.2 shows the spectra of the inverter output waveforms. Both the switching 
frequency component and the third order harmonic are clearly visible in the phase 
voltage spectrum, but are cancelled in the three-phase load as can be seen in the line 
voltage spectrum. The spectral hump below 1 kHz seen in both the line voltage and 
phase current spectra is due to the voltage ripple in the cell-capacitors, and contributes 
in an increased THD above the ideal level. 
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Figure 5.5.1: SVPWM waveforms, mf = 60, ma = 1.0 
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Figure 5.5.2: SVPWM spectra, mf = 60, ma = 1.0 

 

The results can be compared with third-harmonic injected sine-triangle scheme, which 
also allows for increased modulation depth above unity. Table 5.5.1 lists the 
simulation results for the two schemes operating at two different modulation depths. 
As can be seen, there is very little to choose between these two control methods. 

 

Scheme ma Phase 
Voltage 
(Vrms) 

Phase 
Current 
(Arms) 

Line 
Voltage 
(Vrms) 

TPF Power 
(kW) 

Loss 
(W) 

SVPWM 
(ma = 1.0) 

0.97 147.7 11.5 242.0 0.76 3.84 188 

PD + 1/6th 
(ma = 1.0) 

0.97 146.7 11.3 241.9 0.74 3.70 186 

SVPWM 
(ma = 1.1) 

1.07 160.1 10.3 266.3 0.76 3.76 166 

PD + 1/6th 
(ma = 1.1) 

1.07 158.9 10.2 266.6 0.76 3.68 163 

Table 5.5.1: Output performance comparison of different schemes 
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Table 5.5.2 lists the total harmonic distortion factors for the two control modes. Here 
there is a slight improvement in phase current quality for the sine-triangle case. This is 
because the additional harmonics introduced by the effective reference of the 
SVPWM method, introduces additional inter-modulation harmonic products due to the 
cell-capacitor voltage frequency components.  

 

Scheme Phase Voltage 
THD (%) 

Line Voltage  
THD (%) 

Phase Current  
THD (%) 

SVPWM 
(ma = 1.0) 

40.12 18.91 5.49 

PD + 1/6th 
(ma = 1.0) 

37.33 18.63 4.43 

SVPWM 
(ma = 1.1) 

34.15 16.67 4.42 

PD + 1/6th 
(ma = 1.1) 

30.89 16.68 4.11 

Table 5.5.2: Output distortion comparison of different carrier schemes 

 

Table 5.5.3 compares the capacitor and power switch operating parameters and shows 
that both systems are well balanced although there is a slight increase in capacitor 
ripple voltage for the sine-triangle case. This means that the power devices must 
withstand around a 5 % higher blocking voltage in the third harmonic injected sine-
triangle PWM case. However, this reduced capacitor voltage ripple amplitude in the 
SVPWM case does not translate into lower THD for the phase current waveform. 

Overall, the performance of the two schemes is very similar, and the choice between 
which control strategy suites the application best will be based on the hardware 
implementation. The SVPWM requires greater computational effort in order to 
generate the duty-cycle reference and so a DSP implementation may be needed. 
However, it is possible to pre-compute a reference, and adjust the amplitude in real-
time based on the amplitude modulation index. This means that both schemes can be 
implemented in almost identical digital hardware. 
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Peak Power Loss Scheme Cell-Capacitor 
Voltages 

(V) 

Max. 
Switch

(V) 

Cap. 
Current
(Arms) IGBT 

(W) 
Diode 
(W) 

Trans.
(W) 

SVPWM 
(ma = 1.0) 

99.2 198.0 301.8 124.8 5.59 6.60 1.42 0.16 

PD + 1/6th 
(ma = 1.0) 

102.1 200.5 301.4 130.9 5.57 6.42 1.36 0.16 

SVPWM 
(ma = 1.1) 

99.9 199.9 300.0 120.4 4.26 6.07 1.02 0.15 

PD+ 1/6th 
(ma = 1.1) 

101.5 200.3 300.3 124.7 4.27 5.87 0.99 0.14 

Table 5.5.3: Phase balancing performance comparison of different carrier 
schemes 

 

5.6 Conclusions 

It has been shown that the space vector PWM scheme can be implemented in a very 
simple manner even for complex systems like the multilevel flying-capacitor inverter. 
The relationship that exists between the standard SVPWM and sine-triangle, carrier-
based PWM was exploited to simplify the multilevel SVPWM duty-cycle computation 
rather than using a more complex algorithm based on the sub-sector triangles reported 
by other researchers. 

The sub-carrier balancing implementation developed for cell-capacitor voltage ripple 
minimisation when controlled using sine-triangle PWM also functions correctly when 
used in SVPWM control. This means that the flying-capacitor SVPWM algorithm is 
simplified since it does not need to consider the actual switching states, and only 
operates on the voltage level vectors.  

The simulated performance is on a par with optimised sine-triangle schemes, and 
results have been presented of SVPWM operation including a greater than unity 
modulation depth. SVPWM performance has been compared to third harmonic 
injection sine-triangle PWM and the results show the similarity between the two 
schemes. 
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